Organic & Biomolecular Chemistry

Cite this: Org. Biomol. Chem., 2011, 9, 6844

PAPER

Direct enantioselective access to 4-substituted tetrahydroquinolines by catalytic asymmetric transfer hydrogenation of quinolines[†]

Magnus Rueping,* Thomas Theissmann, Mirjam Stoeckel and Andrey P. Antonchick

Received 1st June 2011, Accepted 11th July 2011 DOI: 10.1039/c1ob05870c

A convenient protocol for the enantioselective synthesis of 4-substituted tetrahydroquinolines has been developed. Chiral BINOL phosphoric acids promote the reduction of a wide range of 4-substituted quinolines with Hantzsch esters with good to high levels of enantioselectivity.

Introduction

In recent years, chiral Brønsted acid catalyzed transfer hydrogenation emerged as a generally applicable strategy for the enantioselective reduction of various acyclic as well as cyclic systems containing carbon nitrogen double bonds.^{1,2} In this context, several successful approaches have been disclosed for the efficient reduction of acyclic imines, leading to chiral amines under mild reaction conditions.^{3,4} Furthermore, notable achievements have also been registered in the organocatalyzed reduction of cyclic imines and various nitrogen-containing heteroaromatic systems which offer access to diverse enantioenriched nitrogen heterocycles.⁵⁻⁹ Among them, quinoline reduction^{5,6} constitutes a challenging field since it allows formation of the corresponding tetrahydroquinolines, which are common structural motifs in alkaloids and biologically active compounds. Given the importance of this class of molecules, considerable efforts have been made in order to develop improved methods for their synthesis.

Although several methods have been developed for the asymmetric reduction of 2-substituted quinolines (Scheme 1a), the 3and 4-substituted analogs have received considerably less attention (Scheme 1b). To date, no direct approach for the generation of optically active 4-substituted tetrahydroquinolines has been described.¹⁰ Typically, synthetic routes consist of several steps as, for instance, shown in the enantioselective synthesis of 4ethyl substituted tetrahydroquinoline (Scheme 1c).¹¹ Given the high industrial interest in enantioenriched 4-substituted tetrahydroquinolines we decided to develop a first general catalytic asymmetric route.

Scheme 1 a, b) Asymmetric reduction of 2- and 3-substituted quinolines. c) Asymmetric synthesis of 4-ethyltetrahydroquinoline.

Results and discussion

Our investigation started with the evaluation of various chiral BI-NOL phosphoric acids¹²⁻¹⁴ in the reduction of 4-methylquinoline (lepidine, **1a**) using dihydropyridines as a hydride source. The most successful catalyst previously employed for organocatalytic

Institute of Organic Chemistry, RWTH Aachen University, Landoltweg, 1, D-52074, Aachen, Germany. E-mail: Magnus, Rueping@rwth-aachen.de † Electronic supplementary information (ESI) available: ¹H- and ¹³C-NMR spectra and HPLC chromatograms are provided for all synthesized compounds. See DOI: 10.1039/c1ob05870c

Table 1 Evaluation of different Brønsted acids

^{*a*} Reactions were performed with lepidine, HEH (Hantzsch 1,4dihydropyridine) **4a** (2.4 equiv.) and **3** (5 mol%) at 60 °C. ^{*b*} Enantiomeric excess was determined by HPLC using a Chiralcel OD-H column.

reductions proved less selective, yielding the desired product 2a with just 66% ee (Table 1, entry 7). Hence, further work was devoted to the synthesis of BINOL-phosphates bearing bulkier residues in the 3,3'-positions. To follow the known aryl-substitution pattern (phenyl, naphthyl, phenanthryl), we synthesized the pyrenyl derivative, but the result was disappointing (Table 1, entry 8).

Subsequently, in order to improve the enantioselectivity, chiral phosphates **3i–k** with elongated residues into the space, were synthesized. However, all the acetylene-bridge extended derivatives **3i–k** exhibited only a low level of selectivity (Table 1, entries 9–11). Compared to the phenanthryl derivative which afforded the product with 66% ee, the acetylene elongated one yielded the product with only 11% ee (Table 1, entry 7 vs. 10). A slight increase in the selectivity (67% ee) has been observed with the octahydro-BINOL-phosphate bearing triphenylsilyl residues (Table 1, entry 12).

^{*a*} Reactions were performed with quinolines **1a/5a**, HEH **4a–e** (2.4 equiv.) and **3l** (5 mol%) at 60 °C in 2 mL solvent. ^{*b*} Enantiomeric excess was determined by HPLC using a Chiralcel OD-H column.

entries 6–9). In contrast to the alkyl-substituted quinolines, the corresponding aryl-derivatives prefer sterically more hindered Hantzsch esters **4c–d** as the hydrogen source (Table 2, entries 12–13). It seems that the steric demand of the NADH-synthon is diametrically opposed between alkyl- and aryl-4-substituted quinolines.

The effect of catalyst loading and temperature on the reaction yield and selectivity was also analyzed. First the catalyst loading was varied in the range of 10 to 0.1 mol%. Whereas the enantiomeric excess is nearly constant over the whole range, a better yield was obtained with 5 mol% catalyst. Regarding the influence of the temperature, with lowering the temperature $(60 \rightarrow 50 \rightarrow 40 \text{ °C})$, the enantiomeric excess increased, but the conversion of the reaction considerably decreased. Therefore, the overall best conditions with regard to reaction time and asymmetric induction are 5 mol% of catalyst at 50 °C in benzene or toluene.

Under these optimized conditions we explored the scope of the first asymmetric transfer hydrogenation of various 4-substituted quinolines (Table 3). In general, high enantioselectivities and good yields are observed for various 4-substituted alkyl- and aryl-tetrahydroquinolines (Table 3, entries 1–7 and 8–17 respectively). Especially the chloro-containing substrates could be reduced with high enantioselectivities and excellent yields. In this case, in addition to the activation by the catalyst, the electron

 Table 3
 Scope of the catalytic enantioselective reduction

R ¹ ↓			•	R¹ ⊈
	5 mol% 3I			\frown
N			R ² N H	
1a-g 5a-j			2a-g 6a-j	
Product	\mathbf{R}^{1}	\mathbb{R}^2	Yield ^b (%)	ee ^c (%)
2a	Me	Н	67	73
2b	Me	Cl	85	85
2c	Et	Cl	88	85
2d	<i>i</i> -Pr	Cl	81	90
2e	Bu	Cl	82	84
2f	Bn	Cl	96	84
2g	CO_2Me	Η	67	75
6a	C_6H_5	Cl	96	92
6b	C_6H_5	Н	84	81
6c	$4-Me-C_6H_5$	Cl	92	91
6d	$4-Me-C_6H_5$	Н	77	83
6e	$4-MeO-C_6H_5$	Cl	95	90
6f	$4-MeO-C_6H_5$	Н	90	72
6g	$3-MeO-C_6H_5$	Cl	92	92
6h	$3-\text{MeO-C}_6\text{H}_5$	Н	80	82
6i	2-Naphthyl	Cl	98	90
6j	4-Biphenyl	Cl	96	75
	R ¹ N 1a-g 5a-j Product 2a 2b 2c 2d 2c 2d 2e 2f 2g 6a 6b 6c 6d 6c 6d 6c 6f 6g 6h 6i 6j	$\begin{array}{c} & & \frac{1}{5 \text{ mol}\% 3} \\ \hline & \frac{5 \text{ mol}\% 3}{\text{HEH 4d } (2.4)} \\ \hline & \frac{1 \text{a-g}}{5 \text{a-j}} \\ \hline & \text{Product} \mathbb{R}^1 \\ \hline & \\ \hline & \\ 2a & Me \\ 2b & Me \\ 2c & Et \\ 2d & i\text{-Pr} \\ 2e & Bu \\ 2f & Bn \\ 2g & CO_2Me \\ 6a & C_6H_5 \\ 6b & C_6H_5 \\ 6b & C_6H_5 \\ 6b & C_6H_5 \\ 6c & 4\text{-Me-}C_6H_5 \\ 6d & 4\text{-Me-}C_6H_5 \\ 6d & 4\text{-Me-}C_6H_5 \\ 6d & 4\text{-Me-}C_6H_5 \\ 6f & 4\text{-MeO-}C_6H_5 \\ 6g & 3\text{-MeO-}C_6H_5 \\ 6h & 3$	$\begin{array}{c c} R^1 & 5 \mod 3I \\ \hline & \\ \hline & \\ \hline & \\ \hline & \\ \hline \\ \hline \\ \hline \\ \hline$	$\begin{array}{c c} R^1 \\ \hline & 5 \mod 3l \\ \hline HEH \ 4d \ (2.4 \ equiv.) \\ \hline & R^2 \\ \hline \\ \hline \\ R^2 \\ \hline \\ $

^{*a*} Reactions were performed with quinolines 1/5, HEH 4d (2.4 equiv.) and 3l (5 mol%) at 50 °C. ^{*b*} Yield after chromatography. ^{*c*} Enantiomeric excess was determined by HPLC using Chiralcel OD-H or Chiralpak AD-H. ^{*d*} HEH 4a was used.

withdrawing effect of the chlorine atom most probably enhances the electrophilicity of the substrate by decreasing the electron density of the heteroaromatic ring, thus enabling the attack of the H^- nucleophile.

This rationale is best illustrated by the difference in yield in the case of 2a and 2b which were obtained with 67 and 85% yield, respectively (Table 3, entries 1–2). In the case of quinoline derivatives bearing aryl groups in the 4-position, the electronic nature of this moiety plays a less relevant role since electron donating groups are well tolerated in this reaction. Furthermore, quinoline 1g with an ester group, that might be further functionalized, is also applicable in this procedure (Table 3, entry 7).

The absolute configuration of the product 6j has been determined as *R* by X-ray crystal structure analysis (Fig. 1).

Fig. 1 X-ray crystal structure of tetrahydroquinoline 6j.

Regarding the mechanism of the reaction (Scheme 2), a first step protonation of the substrate yields the corresponding iminium ion. Hydride transfer from the HEH to the substrate takes place selectively, from the less hindered face and gives a chiral enamine intermediate along with a pyridinium salt which undergoes proton transfer to liberate the catalyst. Isomerization of the enamine yields the corresponding chiral iminium ion which is subjected to second hydride transfer. Finally, protonation will regenerate the catalyst.

*BH - chiral BINOL phosphoric acid, Py - pyridine derivative

Scheme 2 Proposed mechanism for the asymmetric reduction.

Our initial catalyst evaluation revealed a strong correlation between the steric bulk of the catalyst substituents in the 3,3position and the selectivity of the reaction, whereby larger residues lead to superior enantioselectivities. Furthermore, when comparing the catalysts bearing large groups directly attached to the BINOL framework with the ones bearing an acetylenebridge or less bulky groups, better results were obtained with the former. This result is explained by the position of the developing stereocenter which is far away from the protonated nitrogen and the catalytic center of the phosphoric acid catalyst. In the case of BINOL derivatives **31** and **3g**, the triphenylsilyl and phenanthryl substituents are able to provide the necessary environment for a selective reaction. In contrast, in the case of **3j** and **3k**, the acetylene-bridge provides too much space around the substrate and, therefore, none of the faces can be effectively shielded.

Conclusions

In summary, we have succeeded in developing the first asymmetric hydrogenation of biologically relevant 4-substituted quinolines. The protocol provides direct access to a large variety of 4-aryland 4-alkyl-substituted tetrahydroquinolines in good yields and good to high enantiomeric excesses. Further work will be devoted to the application of this methodology in the synthesis of more complex molecular architectures.

Experimental

General methods

All reactions were performed under an argon atmosphere. Unless otherwise noted, all materials were obtained from commercial suppliers and were used without further purification. Solvents for extraction and chromatography were technical grade and distilled prior to use. Solvents used in reactions were reagent grade and distilled from the indicated drying agents: benzene (Na). For thin-layer chromatography (TLC), silica gel coated aluminum plates (Merck, silica gel 60 F_{254}) were used and chromatograms were visualized by irradiation with UV light at 254 nm. Column chromatography was performed using Merck silica gel 60 (particle size 0.040–0.063 mm). Solvents mixtures are understood as volume/volume.

¹H-NMR and ¹³C-NMR were recorded on a Bruker AM 250 spectrometer in CDCl₃. Data are reported in the following order: chemical shift (δ) in ppm; multiplicities are indicated as (bs (broadened singlet), s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet)); coupling constants (*J*) are in hertz (Hz). Field Desorption (FD) mass spectra were obtained with Finnigan MAT 95 instrument. Infrared (IR) spectra were recorded on a Bruker Tensor 27 FT-IR spectrometer and are reported in terms of frequency of absorption (cm⁻¹). The enantiomeric excesses were determined by HPLC analysis using a chiral stationary phase column (column, Daicel Co. CHIRALCEL OD-H and CHIRALPAK AD-H; eluent: hexane/2-propanol). The chiral HPLC method was calibrated with the corresponding racemic mixtures. Optical rotations were measured on a Perkin Elmer 241 polarimeter.

General procedure for the transfer hydrogenation of quinolines

In a typical experiment quinoline 1/5, catalyst 3l (5 mol%), Hantzsch dihydropyridine 4a/4d (2.4 equiv.) and benzene (2.0 mL) were added to a screw-capped vial and the mixture was exposed to an argon atmosphere. The resulting yellow solution was allowed to stir at 50 °C for 35–50h. The solvent was evaporated under vacuum, and the residue was purified by column chromatography on silica gel to afford the corresponding amine. The yields and enantiomeric excesses are given in Table 3.

(4*S*)-4-Methyl-1,2,3,4-tetrahydro-quinoline (2a, Table 3, entry 1). Eluted from silica gel using toluene as eluent.

¹H-NMR (CDCl₃): δ = 7.08 (d, *J* = 7.6 Hz, 1H), 6.97 (t, *J* = 7.6 Hz, 1H), 6.63 (dt, *J* = 1.2, 7.4 Hz, 1H), 6.48 (dd, *J* = 1.2, 8.0 Hz, 1H), 3.85 (bs, 1H), 3.40–3.22 (m, 2H), 3.02–2.84 (m, 1H), 2.07–1.92 (m, 1H), 1.76–1.61 (m, 1H), 1.30 (d, *J* = 7.0 Hz, 3H); ¹³C-NMR (CDCl₃): δ = 144.2, 128.4, 126.7, 126.6, 116.9, 114.1, 39.0, 30.2, 29.9, 22.6; MS (FD): *m/z* (%) = 147.8 (100) [M⁺]; IR (KBr): 3407, 3051, 3016, 2955, 2925, 2864, 1606, 1498, 1315, 745 cm⁻¹. HPLC conditions: OD-H column, *n*-hexane/2-propanol = 98/2, flow rate = 0.6 mL min⁻¹, major enantiomer: *t*_R = 17.15 min; minor enantiomer: *t*_R = 18.63 min; [*α*]₂₅²⁵–23.6 (*c* 1.0, CHCl₃).

(4*S*)-7-Chloro-4-methyl-1,2,3,4-tetrahydro-quinoline (2b, Table 3, entry 2). Eluted from silica gel using toluene as eluent. ¹H-NMR (CDCl₃): δ = 6.94 (dd, *J* = 0.8, 8.1 Hz, 1H), 6.57 (dd, *J* = 2.1, 8.1 Hz, 1H), 6.44 (d, *J* = 2.1 Hz, 1H), 3.92 (bs, 1H), 3.39–3.21 (m, 2H), 2.93–2.79 (m, 1H), 2.01–1.88 (m, 1H), 1.72–1.58 (m, 1H), 1.26 (d, *J* = 7.0 Hz, 3H); ¹³C-NMR (CDCl₃): δ = 145.2, 132.0, 129.4, 124.8, 116.6, 113.3, 38.8, 29.9, 29.4, 22.4; MS (FD): *m/z* (%) = 181.8 (100) [M⁺], 183.7 (Cl₂ pattern); IR (KBr): 3417, 2957, 2925, 2867, 1604, 1575, 1496, 1469, 1308, 1088, 1067, 872, 841, 792 cm⁻¹. HPLC conditions: AD-H column, *n*-hexane/2-propanol = 99/1, flow rate = 0.45 mL min⁻¹, major enantiomer: $t_{\rm R}$ = 28.92 min; minor enantiomer: $t_{\rm R}$ = 31.56 min; [α]²⁵₂₅ -18.0 (*c* 0.5, CHCl₃). (4S)-7-Chloro-4-ethyl-1,2,3,4-tetrahydro-quinoline (2c, Table 3, entry 3). Eluted from silica gel using toluene as eluent.

¹H-NMR (CDCl₃): δ = 6.91 (d, *J* = 8.1 Hz, 1H), 6.55 (dd, *J* = 2.1, 8.1 Hz, 1H), 6.44 (d, *J* = 2.1 Hz, 1H), 3.91 (bs, 1H), 3.37–3.18 (m, 2H), 2.66–2.55 (m, 1H), 1.96–1.42 (m, 4H), 0.97 (t, *J* = 7.4 Hz, 3H); ¹³C-NMR (CDCl₃): δ = 145.2, 132.0, 130.1, 123.6, 116.2, 113.3, 38.2, 36.8, 28.9, 25.4, 11.5; MS (FD): *m/z* (%) = 195.0 (100) [M⁺], 197.0 (Cl₂ pattern); IR (KBr): 3393, 2958, 2921, 2844, 1602, 1497, 1093, 844, 798 cm⁻¹. HPLC conditions: AD-H column, *n*-hexane/2-propanol = 99/1, flow rate = 0.45 mL min⁻¹, major enantiomer: *t*_R = 27.88 min; minor enantiomer: *t*_R = 31.48 min; [α]₂₅²⁵ –23.8 (*c* 0.5, CHCl₃).

(4*S*)-7-Chloro-4-isopropyl-1,2,3,4-tetrahydro-quinoline (2d, Table 3, entry 4). Eluted from silica gel using toluene as eluent.

¹H-NMR (CDCl₃): $\delta = 6.89$ (dd, J = 0.6, 8.1 Hz, 1H), 6.54 (dd, J = 2.1, 8.1 Hz, 1H), 6.44 (d, J = 2.1 Hz, 1H), 3.89 (bs, 1H), 3.38– 3.22 (m, 2H), 2.53–2.42 (m, 1H), 2.05–1.85 (m, 2H), 1.82–1.68 (m, 1H), 0.97 (d, J = 6.8 Hz, 3H), 0.88 (d, J = 6.8 Hz, 3H); ¹³C-NMR (CDCl₃): $\delta = 145.4, 132.0, 130.4, 122.6, 115.8, 113.2, 41.9, 39.1, 30.2, 22.6, 21.4, 18.6;$ MS (FD): m/z (%) = 209.0 (100) [M⁺]; IR (KBr): 3390, 2955, 2928, 2851, 1603, 1496, 1090, 842, 799 cm⁻¹. HPLC conditions: AD-H column, *n*-hexane/2-propanol = 99/1, flow rate = 0.45 mL min⁻¹, major enantiomer: $t_R = 25.94$ min; minor enantiomer: $t_R = 37.14$ min; $[\alpha]_{25}^{25} -9.1$ (*c* 0.5, CHCl₃).

(4*S*)-7-Chloro-4-butyl-1,2,3,4-tetrahydro-quinoline (2e, Table 3, entry 5). Eluted from silica gel using toluene as eluent.

¹H-NMR (CDCl₃): $\delta = 6.90$ (d, J = 8.1 Hz, 1H), 6.55 (dd, J = 2.1, 8.1 Hz, 1H), 6.44 (d, J = 2.1 Hz, 1H), 3.91 (bs, 1H), 3.38–3.19 (m, 2H), 2.74–2.64 (m, 1H), 1.96–1.72 (m, 2H), 1.70–1.22 (m, 6H), 0.92 (t, J = 7.0 Hz, 3H); ¹³C-NMR (CDCl₃): $\delta = 145.1$, 131.9, 130.1, 123.9, 116.2, 113.3, 38.1, 36.1, 35.1, 29.1, 25.8, 22.8, 14.1; MS (FD): m/z (%) = 223.8 (100) [M⁺], 225.8 (Cl₂ pattern); IR (KBr): 3419, 2954, 2927, 2857, 1604, 1576, 1496, 1468, 1355, 1309, 1089, 839 cm⁻¹. HPLC conditions: OD-H column, *n*-hexane/2-propanol = 97/3, flow rate = 0.6 mL min⁻¹, major enantiomer: $t_{\rm R} = 12.35$ min; minor enantiomer: $t_{\rm R} = 11.38$ min; $[\alpha]_{\rm D}^{25}$ –8.6 (*c* 0.5, CHCl₃).

(4*S*)-7-Chloro-4-benzyl-1,2,3,4-tetrahydro-quinoline (2f, Table 3, entry 6). Eluted from silica gel using toluene as eluent.

¹H-NMR (CDCl₃): δ = 7.27–7.06 (m, 5H), 6.76 (d, *J* = 8.1 Hz, 1H), 6.46 (dd, *J* = 2.1, 8.1 Hz, 1H), 6.40 (d, *J* = 2.1 Hz, 1H), 3.88 (bs, 1H), 3.35–3.23 (m, 1H), 3.19–3.09 (m, 1H), 3.02–2.86 (m, 2H), 2.69–2.54 (m, 1H), 1.78–1.56 (m, 2H); ¹³C-NMR (CDCl₃): δ = 145.2, 140.0, 132.3, 130.2, 129.3, 128.3, 126.1, 122.7, 116.4, 113.4, 42.9, 37.9, 37.1, 25.0; MS (FD): *m/z* (%) = 257.8 (100) [M⁺], 259.9 (Cl₂ pattern); IR (KBr): 3404, 3042, 3024, 3000, 2953, 2932, 1605, 1504, 1310, 1084, 1028, 844, 796, 704 cm⁻¹. HPLC conditions: OD-H column, *n*-hexane/2-propanol = 90/10, flow rate = 0.6 mL min⁻¹, major enantiomer: $t_{\rm R}$ = 15.62 min; minor enantiomer: $t_{\rm R}$ = 13.73 min; [α]_D²⁵ –115.9 (*c* 1.0, CHCl₃).

(4*S*)-1,2,3,4-Tetrahydro-quinoline-4-carboxylic acid methyl ester (2g, Table 3, entry 7)

Eluted from silica gel using hexane/ethylacetat in a ratio of 20:1 as eluent.

¹H-NMR (CDCl₃): δ = 7.03 (d, J = 7.6 Hz, 1H), 6.96 (t, J = 8.4 Hz, 1H), 6.56 (dt, J = 1.1, 7.6 Hz, 1H), 6.44 (dd, J = 1.1, 8.0 Hz, 1H), 6.56 (dt, J = 1.1, 7.6 Hz, 1H), 6.44 (dd, J = 1.1, 8.0 Hz, 1H), 6.44 (dd, J = 1.1, 8.0 Hz, 1H)

1H), 3.87 (bs, 1H), 3.72 (t, J = 5.0 Hz, 1H), 3.64 (s, 3H), 3.42–3.30 (m, 1H), 3.27–3.16 (m, 1H), 2.27–2.14 (m, 1H), 2.01–1.85 (m, 1H); ¹³C-NMR (CDCl₃): $\delta = 174.7$, 144.4, 130.3, 128.1, 117.0, 114.7, 52.1, 41.7, 38.8, 24.6; MS (FD): m/z (%) = 191.0 (100) [M⁺]; IR (KBr): 3407, 2951, 2926, 2855, 1731, 1601, 1503, 1194, 1164, 748 cm⁻¹. HPLC conditions: AD-H column, *n*-hexane/2-propanol = 80/20, flow rate = 0.6 mL min⁻¹, major enantiomer: $t_{\rm R} = 10.82$ min; minor enantiomer: $t_{\rm R} = 13.01$ min; $[\alpha]_{\rm D}^{25}$ –61.2 (*c* 0.5, CHCl₃).

(4*R*)-7-Chloro-4-phenyl-1,2,3,4-tetrahydro-quinoline (6a, Table 3, entry 8). Eluted from silica gel using toluene as eluent.

¹H-NMR (CDCl₃): δ = 7.26–7.10 (m, 3H), 7.05–7.00 (m, 2H), 6.57 (d, *J* = 7.7 Hz, 1H), 6.45–6.40 (m, 2H), 4.01 (t, *J* = 6.0 Hz, 1H), 3.93 (bs, 1H), 3.26–3.06 (m, 2H), 2.16–2.03 (m, 1H), 2.01– 1.88 (m, 1H); ¹³C-NMR (CDCl₃): δ = 146.0, 145.8, 132.6, 131.4, 128.5, 128.3, 126.3, 121.6, 116.7, 113.4, 42.3, 38.9, 30.6; MS (FD): *m/z* (%) = 243.8 (100) [M⁺], 245.9 (Cl₂ pattern); IR (KBr): 3418, 3058, 3024, 2948, 2924, 2854, 1602, 1494, 1311, 1087, 701 cm⁻¹. HPLC conditions: OD-H column, *n*-hexane/2-propanol = 90/10, flow rate = 0.6 mL min⁻¹, major enantiomer: $t_{\rm R}$ = 21.58 min, minor enantiomer: $t_{\rm R}$ = 12.28 min; $[\alpha]_{\rm D}^{\rm 25}$ –70.8 (*c* 1.0, CHCl₃).

(4*R*)-4-Phenyl-1,2,3,4-tetrahydro-quinoline (6b, Table 3, entry 9). Eluted from silica gel using toluene as eluent.

¹H-NMR (CDCl₃): δ = 7.25–7.03 (m, 5H), 6.93 (t, *J* = 7.0 Hz, 1H), 6.67 (d, *J* = 7.3 Hz, 1H), 6.51–6.44 (m, 2H), 4.07 (t, *J* = 6.1 Hz, 1H), 3.85 (bs, 1H), 3.27–3.10 (m, 2H), 2.20–2.06 (m, 1H), 2.03–1.90 (m, 1H); ¹³C-NMR (CDCl₃): δ = 146.7, 145.0, 130.4, 128.7, 128.3, 127.3, 126.1, 123.4, 117.0, 114.2, 42.8, 39.2, 31.1; MS (FD): *m/z* (%) = 209.9 (100) [M⁺]; IR (KBr): 3414, 3057, 3021, 2951, 2919, 2896, 2850, 2831, 1607, 1505, 1491, 1315, 741, 703 cm⁻¹. HPLC conditions: OD-H column, *n*-hexane/2-propanol = 90/10, flow rate = 0.6 mL min⁻¹, major enantiomer: *t*_R = 22.32 min; minor enantiomer: *t*_R = 14.61 min; [α]₂₅²⁵–60.8 (*c* 1.0, CHCl₃).

(4*R*)-7-Chloro-4-*p*-tolyl-1,2,3,4-tetrahydro-quinoline (6c, Table 3, entry 10). Eluted from silica gel using toluene as eluent. ¹H-NMR (CDCl₃): δ = 7.11 (d, *J* = 7.9 Hz, 2H), 7.00 (d, *J* = 8.1 Hz, 2H), 6.66 (d, *J* = 7.7 Hz, 1H), 6.53–6.47 (m, 2H), 4.05 (t, *J* = 6.0 Hz, 1H), 4.00 (bs, 1H), 3.33–3.18 (m, 2H), 2.33 (s, 3H), 2.22–2.10 (m, 1H), 2.07–1.94 (m, 1H); ¹³C-NMR (CDCl₃): δ = 145.9, 143.0, 135.8, 132.5, 131.4, 129.1, 128.4, 121.9, 116.7, 113.4, 41.9, 38.9, 30.7, 21.0; MS (FD): *m/z* (%) = 257.0 (100) [M⁺], 259.0 (Cl₂ pattern); IR (KBr): 3391, 2956, 2919, 2855, 1604, 1493, 1302, 1088, 816, 796, 536 cm⁻¹. HPLC conditions: OD-H column, *n*-hexane/2-propanol = 98/2, flow rate = 0.6 mL min⁻¹, major enantiomer: *t*_R = 24.83 min; minor enantiomer: *t*_R = 16.75 min; [α]_D²⁵ –70.9 (*c* 1.0, CHCl₃).

(4*R*)-4-*p*-Tolyl-1,2,3,4-tetrahydro-quinoline (6d, Table 3, entry 11). Eluted from silica gel using toluene as eluent.

¹H-NMR (CDCl₃): δ = 7.13–6.97 (m, 5H), 6.77 (d, *J* = 8.1 Hz, 1H), 6.60–6.53 (m, 2H), 4.12 (t, *J* = 6.1 Hz, 1H), 3.93 (bs, 1H), 3.36–3.19 (m, 2H), 2.34 (s, 3H), 2.28–2.12 (m, 1H), 2.10–1.97 (m, 1H); ¹³C-NMR (CDCl₃): δ = 145.0, 143.7, 135.6, 130.4, 129.0, 128.6, 127.2, 123.6, 117.0, 114.2, 42.4, 39.2, 31.2, 21.0; MS (FD): *m/z* (%) = 223.0 (100) [M⁺]; IR (KBr): 3403, 3050, 3020, 2947, 2922, 2852, 1605, 1502, 1313, 741 cm⁻¹. HPLC conditions: OD-H column, *n*-hexane/2-propanol = 90/10, flow rate = 0.6 mL min⁻¹, major enantiomer: *t*_R = 15.41 min; minor enantiomer: *t*_R = 13.38 min; [α]_{D⁵}²⁵ –57.8 (*c* 1.0, CHCl₃).

(4*R*)-7-Chloro-4-(4-methoxy-phenyl)-1,2,3,4-tetrahydro-quinoline (6e, Table 3, entry 12). Eluted from silica gel using toluene as eluent.

¹H-NMR (CDCl₃): δ = 7.03 (d, *J* = 8.6 Hz, 2H), 6.84 (d, *J* = 8.8 Hz, 2H), 6.66 (d, *J* = 7.8 Hz, 1H), 6.54–6.58 (m, 2H), 4.04 (t, *J* = 6.0 Hz, 1H), 4.00 (bs, 1H), 3.79 (s, 3H), 3.34–3.15 (m, 2H), 2.21–2.07 (m, 1H), 2.05–1.92 (m, 1H); ¹³C-NMR (CDCl₃): δ = 158.1, 145.8, 138.1, 132.5, 131.4, 129.4, 122.0, 116.7, 113.8, 113.4, 55.3, 41.5, 38.9, 30.7; MS (FD): *m/z* (%) = 273.0 (100) [M⁺], 275.0 (Cl₂ pattern); IR (KBr): 3417, 2952, 2928, 2832, 1607, 1506, 1247, 1086, 1032, 844 cm⁻¹. HPLC conditions: OD-H column, *n*-hexane/2-propanol = 90/10, flow rate = 0.6 mL min⁻¹, major enantiomer: *t*_R = 19.33 min; minor enantiomer: *t*_R = 14.58 min; [α]²⁵₂ -77.3 (*c* 1.0, CHCl₃).

(4*R*)-4-(4-Methoxy-phenyl)-1,2,3,4-tetrahydro-quinoline (6f, Table 3, entry 13). Eluted from silica gel using toluene as eluent.

¹H-NMR (CDCl₃): δ = 7.06 (d, *J* = 8.6 Hz, 2H), 6.99 (d, *J* = 7.6 Hz, 1H), 6.84 (d, *J* = 8.7 Hz, 2H), 6.76 (d, *J* = 7.3 Hz, 1H), 6.60–6.50 (m, 2H), 4.10 (t, *J* = 6.0 Hz, 1H), 3.93 (bs, 1H), 3.80 (s, 3H), 3.35–3.18 (m, 2H), 2.25–2.12 (s, 1H), 2.08–1.95 (m, 1H); ¹³C-NMR (CDCl₃): δ = 157.9, 144.9, 138.8, 130.4, 129.6, 127.2, 123.8, 117.0, 114.2, 113.7, 55.3, 42.0, 39.2, 31.2; MS (FD): *m/z* (%) = 239.1 (100) [M⁺]; IR (KBr): 3338, 3028, 2948, 2926, 2832, 1607, 1497, 1247, 1033, 746 cm⁻¹. HPLC conditions: OD-H column, *n*-hexane/2-propanol = 90/10, flow rate = 0.6 mL min⁻¹, major enantiomer: $t_{\rm R}$ = 22.54 min; minor enantiomer: $t_{\rm R}$ = 25.68 min; [α]²⁵₂₅–55.4 (*c* 1.0, CHCl₃).

(4*R*)-7-Chloro-4-(3-methoxy-phenyl)-1,2,3,4-tetrahydro-quinoline (6g, Table 3, entry 14). Eluted from silica gel using toluene as eluent.

¹H-NMR (CDCl₃): δ = 7.22 (t, *J* = 7.9 Hz, 1H), 6.79–6.64 (m, 4H), 6.54–6.48 (m, 2H), 4.06 (t, *J* = 6.0 Hz, 1H), 4.00 (bs, 1H), 3.77 (s, 3H), 3.34–3.16 (m, 2H), 2.24–1.96 (m, 2H); ¹³C-NMR (CDCl₃): δ = 159.6, 147.7, 145.8, 132.6, 131.5, 129.3, 121.5, 121.0, 116.8, 114.6, 113.4, 111.3, 55.2, 42.4, 38.9, 30.5; MS (FD): *m/z* (%) = 273.0 (100) [M⁺], 275.0 Cl₂ pattern; IR (KBr): 3415, 2951, 2925, 2834, 1603, 1494, 1312, 1256, 1087, 1046 cm⁻¹. HPLC conditions: OD-H column, *n*-hexane/2-propanol = 90/10, flow rate = 0.6 mL min⁻¹, major enantiomer: $t_{\rm R}$ = 27.35 min; minor enantiomer: $t_{\rm R}$ = 15.72 min; [α]₂₅²⁵ –70.7 (*c* 1.0, CHCl₃).

(4*R*)-4-(3-Methoxy-phenyl)-1,2,3,4-tetrahydro-quinoline (6h, Table 3, entry 15). Eluted from silica gel using toluene as eluent.

¹H-NMR (CDCl₃): δ = 7.22 (t, *J* = 7.9 Hz, 1H), 7.01 (t, *J* = 7.6 Hz, 1H), 6.79–6.69 (m, 4H), 6.61–6.51 (m, 2H), 4.12 (t, *J* = 6.1 Hz, 1H), 3.93 (s, 1H), 3.77 (s, 3H), 3.36–3.19 (m, 2H), 2.28–2.15 (m, 1H), 2.13–2.00 (m 1H); ¹³C-NMR (CDCl₃): δ = 159.6, 148.3, 144.9, 130.4, 129.2, 127.3, 123.2, 121.2, 117.0, 114.7, 114.2, 111.2, 55.2, 42.9, 39.3, 31.0; MS (FD): *m/z* (%) = 239.1 (100) [M⁺]; IR (KBr): 3408, 3059, 2999, 2951, 2922, 2892, 2830, 1277, 1253, 746 cm⁻¹. HPLC conditions: OD-H column, *n*-hexane/2-propanol = 90/10, flow rate = 0.6 mL min⁻¹, major enantiomer: *t*_R = 30.19 min; minor enantiomer: *t*_R = 23.32 min; $[\alpha]_D^{25}$ –51.0 (*c* 1.0, CHCl₃).

(4*R*)-7-Chloro-4-naphthalen-2-yl-1,2,3,4-tetrahydro-quinoline (6i, Table 3, entry 16). Eluted from silica gel using toluene as eluent.

¹H-NMR (CDCl₃): δ = 7.86–7.72 (m, 3H), 7.53–7.40 (m, 3H), 7.30 (dd, J = 1.8, 8.5 Hz, 1H), 6.68 (dd, J = 0.6, 8.1 Hz, 1H),

6.58–6.48 (m, 2H), 4.25 (t, J = 6.1 Hz, 1H), 4.05 (bs, 1H), 3.37– 3.19 (m, 2H), 2.30–2.07 (m, 2H); ¹³C-NMR (CDCl₃): δ = 145.7, 143.3, 133.4, 132.7, 132.2, 131.6, 128.1, 127.7, 127.6, 127.4, 126.6, 126.0, 125.5, 121.7, 117.1, 113.7, 42.5, 39.0, 30.5; MS (FD): m/z(%) = 293.9 (100) [M⁺], 296.1 (Cl₂ pattern); IR (KBr): 3418, 3051, 2923, 2853, 1602, 1495, 1310, 1087, 820, 755, 743, 477 cm⁻¹. HPLC conditions: OD-H column, *n*-hexane/2-propanol = 90/10, flow rate = 0.6 mL min⁻¹, major enantiomer: $t_{\rm R} = 21.03$ min; minor enantiomer: $t_{\rm R} = 16.54$ min; [α]₂₅²⁵ –89.0 (*c* 1.0, CHCl₃).

(4*R*)-4-Biphenyl-4-yl-7-chloro-1,2,3,4-tetrahydro-quinoline (6j, Table 3, entry 17). Eluted from silica gel using toluene as eluent. ¹H-NMR (CDCl₃): δ = 7.62–7.50 (m, 4H), 7.44 (t, *J* = 7.3 Hz, 2H), 7.34 (t, *J* = 7.2 Hz, 1H), 7.19 (d, *J* = 8.2 Hz, 2H), 6.71 (d, *J* = 8.4 Hz, 1H), 6.55–6.50 (m, 2H), 4.14 (t, *J* = 5.9 Hz, 1H), 4.03 (bs, 1H), 3.38–3.18 (m, 2H), 2.29–2.14 (m, 1H), 2.13–2.00 (m, 1H); ¹³C-NMR (CDCl₃): δ = 145.9, 145.1, 140.9, 139.3, 132.7, 131.5, 128.9, 128.7, 127.1, 127.1, 127.0, 121.5, 116.8, 113.5, 42.0, 38.9, 30.6; MS (FD): *m/z* (%) = 320.0 (100) [M⁺], 322.0 (Cl₂ pattern); IR (KBr): 3419, 2954, 2925, 2867, 1604, 1496, 1308, 1088 cm⁻¹. HPLC conditions: OD-H column, *n*-hexane/2-propanol = 90/10, flow rate = 0.6 mL min⁻¹, major enantiomer: $t_R = 24.90$ min; minor enantiomer: $t_R = 17.84$ min; $[\alpha]_D^{25} - 64.0$ (*c* 0.8, CHCl₃).

Acknowledgements

Financial support by the DFG (SPP 1179) is gratefully acknowledged.

Notes and references

- General reviews on Brønsted acid catalysis (a) P. R. Schreiner, Chem. Soc. Rev., 2003, 32, 289; (b) C. Bolm, T. Rantanen, I. Schiffers and L. Zani, Angew. Chem., Int. Ed., 2005, 44, 1758; (c) T. Akiyama, J. Itoh and K. Fuchibe, Adv. Synth. Catal., 2006, 348, 999; (d) T. Akiyama, Chem. Rev., 2007, 107, 5744; (e) A. G. Doyle and E. N. Jacobsen, Chem. Rev., 2007, 107, 5713; (f) D. Kampen, C. M. Reisinger and B. List, Top. Curr. Chem., 2010, 291, 395; (g) H. Yamamoto and N. Payette, inHydrogen Bonding in Organic Synthesis, Ed. P. M. Pihko, Wiley-VCH, Weinheim, 2009, pp. 73–140.
- Reviews on metal-free transfer hydrogenation: (a) S. G. Ouellet, A. M. Walji and D. W. C. MacMillan, Acc. Chem. Res., 2007, 40, 1327; (b) S. L. You, Chem.–Asian J., 2007, 2, 820; (c) S. J. Connon, Org. Biomol. Chem., 2007, 5, 3407; (d) C. Wang, X. F. Wu and J. L. Xiao, Chem.–Asian J., 2008, 3, 1750; (e) M. Rueping, E. Sugiono and F. R. Schoepke, Synlett, 2010, 852; (f) M. Rueping, J. Dufour and F. R. Schoepke, Green Chem., 2011, 13, 1084.
- 3 T. C. Nugent, *Chiral Amine Synthesis: Methods, Developments and Applications*, Wiley-VCH, Weinheim, 2010.
- 4 For selected examples, see: (a) M. Rueping, C. Azap, E. Sugiono and T. Theissmann, Synlett, 2005, 2367; (b) M. Rueping, E. Sugiono, C. Azap, T. Theissmann and T. M. Bolte, Org. Lett., 2005, 7, 3781; (c) S. Hoffmann, A. M. Seayad and B. List; Angew. Chem., Int. Ed., 2005, 44, 7424; (d) S. Hoffmann, M. Nicoletti and B. List, J. Am. Chem. Soc., 2006, 128, 13074; (e) R. I. Storer, D. E. Carrera, Y. Ni and D. W. C. MacMillan, J. Am. Chem. Soc., 2006, 128, 84; (f) C. Zhu and T. Akiyama, Org. Lett., 2009, 11, 4180; (g) Q. Kang, Z. A. Zhao and S. L. You, Adv. Synth. Catal., 2007, 349, 1657; (h) G. L. Li, Y. X. Liang and J. C. Antilla, J. Am. Chem. Soc., 2007, 129, 5830; (i) Q. Kang, Z. A. Zhao and S. L. You, Org. Lett., 2008, 10, 2031; (j) L. Simon and J. M. Goodman, J. Am. Chem. Soc., 2008, 130, 8741; (k) T. Marcelli, P. Hammar and F. Himo, Chem.-Eur. J., 2008, 14, 8562; (1) G. L. Li and J. C. Antilla, Org. Lett., 2009, 11, 1075; (m) T B. Nguyen, H. Bousserouel, Q. Wang and F. Guéitte, Org. Lett., 2010, 12, 4705; (n) C. Zhu and T. Akiyama, Org. Lett., 2009, 11, 4180; (o) C. Zhu and T. Akiyama, Adv. Synth. Catal., 2010, 352, 1846; (p) T. B. Nguyen, H. Bousserouel, Q. Wang and F. Guéitte, Adv. Synth. Catal., 2011, 353, 257.

- 5 Examples of organocatalytic quinoline reduction: (a) M. Rueping, T. Theissmann and A. P. Antonchick, *Synlett*, 2006, 1071; (b) M. Rueping and W. Ieawsuwan, *Synlett*, 2007, 247; (c) M. Rueping, A. P. Antonchick and T. Theissmann, *Angew. Chem., Int. Ed.*, 2006, **45**, 3683; (d) M. Rueping, M. Stoeckel, E. Sugiono and T. Theissmann, *Tetrahedron*, 2010, **66**, 6565. For the quinoline reduction in aqueous solution, see; (e) M. Rueping and T. Theissmann, S. Raja and J. W. Bats, *Adv. Synth. Catal.*, 2008, **350**, 1001; (g) Q. S. Guo, D. M. Du and J. Xu, *Angew. Chem., Int. Ed.*, 2008, **47**, 759.
- 6 Examples of asymmetric metal catalyzed reduction of 2-substituted quinolines: (a) W.-B. Wang, S.-M. Lu, P. Y. Yang, X.-W. Han and Y.-G. Zhou, J. Am. Chem. Soc., 2003, 125, 10536; (b) S.-M. Lu, X.-W. Han and Y.-G. Zhou, Adv. Synth. Catal., 2004, 346, 909; (c) L. Xu, K. H. Lam, J. Li, J. Wu, Q.-H. Fan, W.-H. Lo and A. S. C. Chan, Chem. Commun., 2005, 1390; (d) K. H. Lam, L. Xu, L. Feng, Q.-H. Fan, F. L. Lam, W.-H. Lo and A. S. C. Chan, Adv. Synth. Catal., 2005, 347, 1755; (e) S.-M. Lu, Y.-Q. Wang, X.-W. Han and Y.-G. Zhou, Angew. Chem., Int. Ed., 2006, 45, 2260; (f) M. T. Reetz and X. Li, Chem. Commun., 2006, 2159; (g) Z.-J. Wang, G.-J. Deng, Y. Li, Y.-M. He, W.-J. Tang and Q.-H. Fan, Org. Lett., 2007, 9, 1243; (h) W.-J. Tang, S.-F. Zhu, L.-J. Xu, Q.-L. Zhou, Q.-H. Fan, H.-F. Zhou, K. Lam and A. S. C. Chan, Chem. Commun., 2007, 613; (i) C. Deport, M. Buchotte, K. Abecassis, H. Tadaoka, T. Ayad, T. Ohshima, J.-P. Genet, K. Mashima and V. Ratovelomanana-Vidal, Synlett, 2007, 2743; (j) N. Mrsic, L. Lefort, B. Laurent, A. F. Jeroen, A. J. Minnaard, B. L. Feringa and J. G. de Vries, Adv. Synth. Catal., 2008, 350, 1081; (k) Z. W. Li, T. L. Wang, Y. M. He, Z. J. Wang, O. H. Fan, J. Pan and L. J. Xu, Org. Lett., 2008, 10, 5265; (1) H. Zhou, Z. Li, Z. Wang, T. Wang, L. Xu, Y. He, Q.-H. Fan, J. Pan, L. Gu and A. S. C. Chan, Angew. Chem., Int. Ed., 2008, 47, 8464; (m) S.-M. Lu and C. Bolm, Adv. Synth. Catal., 2008, 350, 1101; (n) H. Tadaoka, D. Cartigny, T. Nagao, T. Gosavi, T Ayad, J.-P. Genet, T. Ohshima, V. Ratovelomanana-Vidal and K. Mashima, Chem.-Eur. J., 2009, 15, 9990; (o) M. Eggenstein, A. Thomas, J. Theuerkauf, G. Francio and W. Leitner, Adv. Synth. Catal., 2009, 351, 725; (p) Z.-J. Wang, H.-F. Zhou, T.-L. Wang, Y.-M. He and Q.-H. Fan, Green Chem., 2009, 11, 767; (q) M. Rueping and R. M. Koenigs, Chem. Commun., 2011, 47, 304. For an overview see: Y.-G. Zhou, Acc. Chem. Res., 2007, 40, 1357.
- 7 Asymmetric organocatalytic reduction of other nitrogen-containing cyclic systems: (a) M. Rueping, A. P. Antonchick and T. Theissmann, Angew. Chem., Int. Ed., 2006, 45, 6751; (b) M. Rueping and A. P. Antonchick, Angew. Chem., Int. Ed., 2007, 46, 4562; (c) M. Rueping, F. Tato and F. R. Schoepke, Chem.–Eur. J., 2010, 16, 2688; (d) M. Rueping, C. Brinkmann, A. P. Antonchick and I. Atodiresei, Org. Lett., 2010, 12, 4604; (e) M. Rueping, E. Merino and R. M. Koenigs, Adv. Synth. Catal., 2010, 352, 2629; (f) Z.-Y. Han, H. Xiao and L.-Z. Gong, Bioorg. Med. Chem. Lett., 2009, 19, 3729; (g) C. Metallinos, F. B. Barrett and S. Xu, Synlett, 2008, 720. For a metal/Brønsted acid catalytic system used in the enantioselective hydrogenation of quinoxalines, see: Q.-A. Chen, D.-S. Wang, Y.-G. Zhou, Y. Duan, H.-J. Fan, Y. Yang and Z. Zhang, J. Am. Chem. Soc., 2011, 133, 6126.
- 8 For overviews on metal catalyzed reduction of carbon-nitrogen double bonds, see: (a) T. L. Church and P. G. Andersson, in *Chiral Amine Synthesis: Methods, Developments and Applications*, Ed., T. C. Nugent, Wiley-VCH, Weinheim, 2010, pp. 179–223; (b) D.-W. Wang, Y.-G. Zhou, Q.-A. Chen and D.-S. Wang, in *Chiral Amine Synthesis: Methods, Developments and Applications*, Ed., T. C. Nugent, Wiley-VCH, Weinheim, 2010, pp. 299–339.
- 9 Applications in the synthesis of natural products and pharmaceuticals: (a) E. Marqué-Lóez, R. P. Herrera and M. Christmann, *Nat. Prod. Rep.*, 2010, **27**, 1138; (b) R. M. de Figueiredo and M. Christmann, *Eur. J. Org. Chem.*, 2007, 2575; (c) M. J. Gaunt, C. C. C. Johansson, A. McNally and N. T. Vo, *Drug Discovery Today*, 2007, **12**, 8.
- 10 For the complete reduction of auxiliary-substituted quinolines to 4substituted decahydroquinolines, see: M. Heitbaum, R. Frölich and F. Glorius, *Adv. Synth. Catal.*, 2010, **352**, 357.
- 11 N. S. Mani and M. Wu, Tetrahedron: Asymmetry, 2000, 11, 4687.
- 12 Reviews on BINOL-derived acids: (a) M. Terada, Chem. Commun., 2008, 4097; (b) M. Terada, Synthesis, 2010, 1929; (c) M. Terada, Bull. Chem. Soc. Jpn., 2010, 83, 101; (d) A. Zamfir, S. Schenker, M. Freund and S. B. Tsogoeva, Org. Biomol. Chem., 2010, 8, 5262; (e) M. Rueping, A. Kuenkel and I. Atodiresei, Chem. Soc. Rev., 2011, 40, DOI: 10.1039/C1CS15087A; (f) M. Rueping, B. J. Nachtsheim, W. Ieawsuwan and I. Atodiresei, Angew. Chem. Int. Ed., 2011, 50, 6706– 6720.

- 13 Examples of Brønsted acid catalyzed reactions from our group: (a) M. Rueping, E. Sugiono and C. Azap, Angew. Chem., Int. Ed., 2006, 45, 2617; (b) M. Rueping and C. Azap, Angew. Chem., Int. Ed., 2006, 45, 7832; (c) M. Rueping, W. Ieawsuwan, A. P. Antonchick and B. J. Nachtsheim, Angew. Chem., Int. Ed., 2007, 46, 2097; (d) M. Rueping, E. Sugiono, T. Theissmann, A. Kuenkel, A. Kockritz, A. Pews-Davtyan, N. Nemati and M. Beller, Org. Lett., 2007, 9, 1065; (e) M. Rueping, E. Sugiono and S. A. Moreth, Adv. Synth. Catal., 2007, 349, 759; (f) M. Rueping, E. Sugiono and F. R. Schoepke, Synlett, 2007, 1441; (g) M. Rueping, A. P. Antonchick and C. Brinkmann, Angew. Chem., Int. Ed., 2007, 46, 6903; (h) M. Rueping and A. P. Antonchick, Org. Lett., 2008, 10, 1731; (i) M. Rueping and A. P. Antonchick, Angew. Chem., Int. Ed., 2008, 47, 10090; (j) M. Rueping, T. Theissmann, A. Kuenkel and R. M. Koenigs, Angew. Chem., Int. Ed., 2008, 47, 6798; (k) M. Rueping, A. P. Antonchick, E. Sugiono and K. Grenader, Angew. Chem., Int. Ed., 2009, 48, 908; (1) M. Rueping and W. Ieawsuwan, Adv. Synth. Catal., 2009, 351, 78; (m) M. Rueping and M.-Y. Lin, Chem.-Eur. J., 2010, 16, 4169; (n) M. Rueping, U. Uria, M.-Y. Lin and I. Atodiresei, J. Am. Chem. Soc., 2011, 133, 3732; (o) M. Rueping, S. Raja and A. Núúez, Adv. Synth. Catal., 2011, 353, 563; (p) M. Rueping, T. Bootwicha and E. Sugiono, Synlett, 2011, 323; (q) R. Husmann, E. Sugiono, S. Mersmann, G. Raabe, M. Rueping and C. Bolm, Org. Lett., 2011, 13, 1044; (r) M. Rueping and L. Hubener, Synlett, 2011, 1243; (s) M. Fleischmann, D. Drettwan, E. Sugiono, M. Rueping and R. M. Gschwind, Angew. Chem., Int. Ed., 2011, 50, 6364
- 14 For selected examples, see: (a) T. Akiyama, J. Itoh, K. Yokota and K. Fuchibe, Angew. Chem., Int. Ed., 2004, 43, 1566; (b) M. Terada and K. Sorimachi, J. Am. Chem. Soc., 2007, 129, 292; (c) M. J. Wanner, R. N. S. van der Haas, K. R. de Cuba, J. H. van Maarseveen and H. Hiemstra, Angew. Chem., Int. Ed., 2007, 46, 7485; (d) S. Xu, Z. Wang,

X. Zhang, X. Zhang and K. Ding, Angew. Chem., Int. Ed., 2008, 47, 2840; (e) D. Enders, A. A. Narine, F. Toulgoat and T. Bisschops, Angew. Chem., Int. Ed., 2008, 47, 5661; (f) C. Baudequin, A. Zamfir and S. B. Tsogoeva, Chem. Commun., 2008, 4637; (g) M. Lu, D. Zhu, Y. Lu, X. Zeng, B. Tan, Z. Xu and G. Zhong, J. Am. Chem. Soc., 2009, 131, 4562; (h) M. Sickert and C. Schneider, Angew. Chem., Int. Ed., 2009, 48, 3631; (i) Z.-Y. Han, H. Xiao, X.-H. Chen and L.-Z. Gong, J. Am. Chem. Soc., 2009, 131, 9182; (j) M. E. Muratore, C. A. Holloway, A. W. Pilling, R. I. Storer, G. Trevitt and D. J. Dixon, J. Am. Chem. Soc., 2009, 131, 10796; (k) X. H. Chen, O. Wei, S. W. Luo, H. Xiao and L. Z. Gong, J. Am. Chem. Soc., 2009, 131, 13819; (1) T. Yue, M.-X. Wang, D.-X. Wang, G. Masson and J. Zhu, Angew. Chem., Int. Ed., 2009, 48, 6717; (m) Q.-W. Zhang, C.-A. Fan, H.-J. Zhang, Y.-Q. Tu, Y.-M. Zhao, P. Gu and Z.-M. Chen, Angew. Chem., Int. Ed., 2009, 48, 8572; (n) Q. Gu, Z.-Q. Rong, C. Zheng and S.-L. You, J. Am. Chem. Soc., 2010, 132, 4056; (o) V. N. Wakchaure, J. A. Zhou, S. Hoffmann and B. List, Angew. Chem., Int. Ed., 2010, 49, 4612; (p) M. Sickert, F. Abels, M. Lang, J. Sieler, C. Birkemeyer and C. Schneider, Chem.-Eur. J., 2010, 16, 2806; (q) T. Wang, G.-W. Zhang, Y. Teng, J. Nie, Y. Zheng and J.-A. Ma, Adv. Synth. Catal., 2010, 352, 2773; (r) W. Zheng, L. Wojtas and J. Antilla, Angew. Chem., Int. Ed., 2010, 49, 6589; (s) W. Kashikura, K. Mori and T. Akiyama, Org. Lett., 2011, 13, 1860; (t) Q. Yin and S.-L. You, Chem. Sci., 2011, **2**, 1344; (u) X. Yu, Y. Wang, G. Wu, H. Song, Z. Zhou and C. Tang, Eur. J. Org. Chem., 2011, 3060; (v) M. Yang, Y.-M. Zhao, S.-Y. Zhang, Y.-Q. Tu and F.-M. Zhang, Chem.-Asian J., 2011, 6, 1344; (w) Y. Xie, Y. Zhao, B. Qian, L. Yang, C. Xia and H. Huang, Angew. Chem., Int. Ed., 2011, 50, 5682; (x) K. Mori, K. Ehara, K. Kurihara and T. Akiyama, J. Am. Chem. Soc., 2011, 133, 6166; (v) J. Lv, L. Zhang, Y. Zhou, Z. Nie, S. Luo and J.-P. Cheng, Angew. Chem., Int. Ed., 2011, 50, 6610; (z) T. Hirata and M. Yamanaka, Chem.-Asian J., 2011, 6, 510.